Magnetic characteristics of two two-dimensional bimetallic assemblies, $[Ni(diamine)_{2}]_{2}$ **[Fe(CN)₆]NO₃·nH₂O (diamine = 1,3-diaminopropane,** $n = 2$; ethylenediamine, $n = 3$), with a **square molecular structure**

Hui-Zhong Kou,*^a* **Wei-Ming Bu,***^b* **Dai-Zheng Liao,****^a* **Zong-Hui Jiang,***^a* **Shi-Ping Yan,***^a* **Yu-Guo Fan** *^b* **and Geng-Lin Wang** *^a*

^a Department of Chemistry, Nankai University, Tianjin 300071, P.R. China. E-mail: chemczl@sun.nankai.edu.cn

^b Laboratory of Supramolecular and Spectroscopy, Jilin University, Changchun 130023, Jilin Province, P.R. China

Received 14th July 1998, Accepted 23rd October 1998

Two bimetallic assemblies, $[Ni(\text{diamine})_2]_2[Fe(CN)_6]NO_3 \cdot nH_2O$ [diamine = 1,3-diaminopropane (tn), *n* = 2 (1); ethylenediamine (en), $n = 3$ (2)], were prepared and their magnetic properties studied. The structure of 1 consists of a two-dimensional sheet of polycations containing Ni–N=C–Fe linkages and NO₃⁻ anions. In the crystal the four CN⁻ ligands of Fe(CN)₆³⁻ co-ordinate to the *trans*-[Ni(tn)₂]²⁺ cations in a bent fashion which is significantly different from similar 2-D sheet-like Ni**2**Fe complexes. The complexes both exhibit intramolecular ferromagnetic interaction and the magnetic data have been analysed giving the intramolecular Fe–Ni exchange integral of 0.88 cm^{-1} for 1 and 0.92 cm^{-1} for **2**, respectively.

Introduction

Cyanide-bridged bimetallic assemblies of Prussian Blue type, derived from $[M(CN)_6]^{\text{n}^-}$ (M = Cr^{III}, Mn^{III}, Fe^{III} or V^{II}), have attracted much attention in the area of molecular-based magnets.**1–12** These complexes exhibit spontaneous magnetisation at considerably high temperatures and form a family of magnetic materials.

In order to clarify the magneto-structural correlation of cyano-bridged bimetallic systems, a wide variety of hybrid Prussian Blue complexes derived from $[M(CN)_6]^{3-} (M = Cr^{III})$, Mn^{III}, or Fe^{III}) and transition metal complexes have been studied structurally and magnetically.**13–29** They assume oligonuclear,**13,14** 1-D,**15–19** 2-D**17,20–27** and 3-D**28,29** structures and exhibit ferro- or meta-magnetic behaviour. Among them, the Ni**II**–Fe**III** bimetallic assemblies, *e.g.* pentanuclear cluster [Ni- $(bpm)_2$]₃[Fe(CN)₆]₂·7H₂O [bpm = bis(pyrazol-1-yl)methane],¹³ 1-D chain complexes $[Ni(en)]_3[Fe(CN)_6]_2$ ^{2H₂O¹⁵ and $[PPh_4]$ -} $[Ni(pn)_2][Fe(CN)_6]$ (pn = propane-1,2-diamine)¹⁷ and 2-D sheet $[Ni(diamine)₂]$ ₂ $[Fe(CN)₆]X$ (diamine = 1,1-dimethylethylenediamine or pn; $X = ClO₄⁻$, $NO₃⁻$, $PhCO₂⁻$, $I⁻$ or $N₃⁻)²⁰⁻²²$ as well as $3-D$ $[Ni(tren)]_3[Fe(CN)_6]_2.6H_2O$ $[then = tris(2-amin-1)]_3$ ethyl)amine], **²⁸** have been synthesized and characterised in much detail and invariably exhibit a ferromagnetic interaction between the adjacent nickel(I II) and iron(I III) ions through the CN^- bridges. Significantly, it has been found that the 2-D complexes $[Ni(diamine)₂]$ ₂ $[Fe(CN)₆]X·nH₂O$ exhibit ferro- or metamagnetic behaviour dependent on the difference in intersheet separations.**21** As an extension of those studies, two 2-D complexes, $[Ni(tn)₂]$ ₂ $[Fe(CN)₆]NO₃·2H₂O$ **1** (tn = propane-1,3diamine) and $[Ni(en)]_2[Fe(CN)_6]NO_3 \cdot 3H_2O$ 2, were prepared. The crystal structure of **1** was determined by X-ray crystallography revealing a 2-D network extended by Fe^{III} –CN–Ni^{II} linkages. Magnetic properties of the compounds are also reported.

Experimental

The physical measurements have been performed as described previously.**¹⁸**

FULL PAPER

FULL PAPEF

DALTON

Preparations

[Ni(tn)2]2[Fe(CN)6]NO3?**2H2O 1.** To an aqueous solution of $[Ni(tn)$ ₃ $[NO_3]$ ₂ prepared by mixing $Ni(NO_3)$ ₂ $·6H$ ₂O (1 mmol, 290.8 mg) and tn (3 mmol, 222.3 mg) in 20 cm**³** of water was added $K_3Fe(CN)_6$ (0.5 mmol, 165 mg) in water (15 cm³) at room temperature. Brown microcrystals precipitated from the resulting brown solution in 10 min. They were collected by suction filtration, washed with water and ethanol, and dried *in vacuo* over P**2**O**5**. Yield 253.3 mg, 70% (Found: C, 29.9; H, 6.0; N, 28.5. C**18**H**44**FeN**15**Ni**2**O**5** requires C, 29.9; H, 6.1; N, 29.0%). IR: $v_{\text{max}}/\text{cm}^{-1}$ 2150, 2140 and 2060 (C \equiv N) and 1380 (N–O).

Brown crystals suitable for X-ray single crystal analysis were obtained by slow evaporation of the above filtrate in a refrigerator.

 $[Ni(en)_2]$ ₂ $[Fe(CN)_6]NO_3$ ·3H₂O 2. This complex was prepared as black crystals in a way similar to that of **1**, except for the use of en (3 mmol, 180.3 mg) instead of tn. Yield 205.7 mg, 60% (Found: C, 24.6; H, 5.8; N, 30.8. C**14**H**38**FeN**15**Ni**2**O**6** requires C, 24.5; H, 5.6; N, 30.6%). IR: $v_{\text{max}} / \text{cm}^{-1}$ 2150, 2130 and 2110 $(C \equiv N)$ and 1380 (N-O).

Crystal structure determination of complex 1

Crystal data. $C_{18}H_{44}FeN_{15}Ni₂O₅$, $M = 723.95$, triclinic, space group *P*1, *a* = 8.9298(8), *b* = 9.9358(9), *c* = 10.1319(7) Å, *U* = 806.97(12) Å³, *T* = 293(2) K, *Z* = 1, μ (Mo-K α) = 1.651 mm⁻¹, 3440 reflections measured and considered unique $(R_{int} = 0.062)$ used in all calculations. The final *wR* was 0.053. $R1(F) = 0.0466$.

Fig. 1 An ORTEP**³⁰** drawing of complex **1** with the atom numbering scheme.

Fig. 2 Projection of the polymeric sheet-like structure along the *a* axis showing Fe_4Ni_4 squares and hydrogen bonds $(--)$.

CCDC reference number 186/1212.

See http://www.rsc.org/suppdata/dt/1998/4161/ for crystallographic files in .cif format.

Results and discussion

The complexes **1** and **2** were obtained as crystals when $Fe(CN)_{6}^{3}$ ⁻ reacted with $[Ni(diamine)_{3}][NO_{3}]_{2}$ (diamine = tn or en). The synthetic method has been commonly used to prepare cyanide-bridged bimetallic complexes of different structures.**¹⁶**

The IR spectral data of the complexes given in the Experimental section show three sharp bands at 2150, 2140 and 2060 cm^{-1} for 1 and 2150, 2130 and 2110 cm^{-1} for 2, respectively, which are attributed to $C \equiv N$ stretching modes. The shift of v(C=N) to higher wavenumber compared with that of $K_3Fe(CN)_6$ (2119 cm⁻¹) suggests a lowered symmetry about the Fe(CN) $_6^{3-}$ entity and the formation of CN⁻ bridges, as observed for other cyano-bridged systems.**13–16,22,23,29** The appearance of the sharp band at 1380 cm^{-1} in the spectra indicates the presence of free $NO₃⁻$ anions.

Crystal structure of complex 1

The asymmetric unit is shown in Fig. 1. Selected bond distances and angles are listed in Table 1 and intermolecular contacts involving H atoms in Table 2.

Table 1 Selected bond lengths (A) and angles (\degree) for complex **1**

$Fe-C(3)$	1.901(2)	$Fe-C(5)$	1.914(2)
$Fe-C(2)$	1.925(2)	$Fe-C(1)$	1.982(3)
$Fe-C(6)$	1.996(2)	$Fe-C(4)$	2.023(3)
$C(1) - N(1)$	1.132(3)	$C(4) - N(4)$	1.122(3)
$C(2) - N(2)$	1.163(2)	$Ni(1^{i})-N(2)$	2.174(2)
$C(3) - N(3)$	1.177(3)	Ni(1)–N(1)	2.127(2)
$C(5) - N(5)$	1.141(2)	Ni(2)–N(5)	2.146(2)
$C(6)-N(6)$	1.132(2)	Ni(1)–N(7)	2.072(2)
Ni(1)–N(9)	2.116(2)	Ni(1)–N(8)	2.124(2)
Ni(1)–N(10)	2.155(2)	Ni(1)–N(2 ⁱⁱⁱ)	2.177(2)
Ni(2)–N(12)	2.031(2)	Ni(2)–N(13)	2.094(2)
Ni(2)–N(11)	2.1561(2)	Ni(2)–N(14)	2.165(2)
Ni(2)–N(6 ^{iv})	2.144(2)	$Fe \cdots$ Ni(1)	5.081
$Fe \cdots$ Ni(2)	4.958		
$N(1)$ –C (1) –Fe	168.8(7)	$C(1) - N(1) - Ni(1)$	161.3(7)
$N(2)$ –C(2)–Fe	173.7(9)	$C(2)$ -N(2)-Ni(1 ¹)	148.3(9)
$N(3)-C(3)-Fe$	176.8(9)	$N(4)$ –C(4)–Fe	164.7(8)
$N(5)-C(5)-Fe$	167.7(7)	$C(5)-N(5)-Ni(2)$	153.7(6)
$N(6)-C(6)-Fe$	174.3(8)	$C(6)-N(6)-Ni(2^{ii})$	144.2(6)
$N(7) - Ni(1) - N(10)$	177.8(8)	$N(8) - Ni(1) - N(2iii)$	88.5(7)
$N(13) - N(2) - N(5)$	92.1(7)	$N(12) - N(2) - N(14)$	176.4(6)
$N(11) - Ni(2) - N(14)$	88.7(8)	$N(5) - Ni(2) - N(6^{\rm iv})$	177.3(9)
		Symmetry transformations: i x, y, z - 1; ii x, y + 1, z; iii x, y, z + 1;	
iv $x, y - 1, z$.			

The asymmetric unit consists of two *trans*- $[Ni(tn)₂]^{2+}$ cations, one Fe(CN) $_6^{3}$, one NO₃⁻ anion and two water molecules. No atom is sited at a special equivalent position. The 2-D sheetlike $\{[\text{Ni(tn)}_2]_2[\text{Fe(CN)}_6]\}^{n+}$ polycations are formed by the Ni-N=C-Fe linkages and can be described as a square network constructed by the cross-linking of snake-shaped Ni–Fe chains (Fig. 2).

 $Hexacyan of errate(III) ion co-ordinates to four adjacent$ *trans*- $[Ni(tn)_2]^2$ ⁺ cations through four cyano nitrogen atoms [N(1), N(2), N(5), N(6)] on a plane [Ni(1)–N 2.127(2) and 2.177 Å; Ni(2)–N 2.146(2) and 2.144(2) Å]. The Ni–N (tn) lengths range from $2.072(2)$ to $2.155(2)$ Å for Ni(1) and 2.031(2) to 2.165(2) Å for Ni(2). The tn molecules in *trans*- $[Ni(tn)₂]$ ²⁺ assume a chair conformation similar to that in $[Ni(tn)₂]$ ₃[Fe^{II}(CN)₆][PF₆]₂.²⁸

The average Fe–C and C \equiv N distances are 1.957(2) and 1.144(2) Å, respectively, which are within the normal range whereas the Fe–C \equiv N bond angles vary in the range 164.7(8)– 176.8(9)°. It should be noted that the Ni-N=C bond angles range from $144.2(6)$ to $161.3(7)^\circ$, *i.e.* the bridging CN ligands co-ordinate to nickel (II) ions in a considerably bent fashion, which is unique for the 2-D sheet-like Ni₂Fe complexes. The adjacent Fe \cdots Ni distances are 5.081 Å for Fe \cdots Ni(1) and 4.958 Å for Fe \cdots Ni(2). The NO₃⁻ ion is situated within each $Ni₄Fe₄$ square and linked to N(7) of the tn ligand $[O(2) \cdots N(7)]$ 2.932 Å]. In the crystal the sheets align along the *a* axis with a separation of *ca*. 8.9 Å. The water molecules are positioned between the sheets and linked to the terminal CN ligands of $Fe(CN)₆³$ *via* hydrogen bonding (Table 2).

Every effort to determine the structure of complex **2** has failed owing to the weak diffraction peaks obtained during data collection. Based on IR, microelemental analyses and the structure of complex **1**, we presume that **2** has a 2-D sheet structure similar to that of **1**. As pointed out by Ohba *et al*., the square cavity formed by the Ni**4**Fe**4** moiety plays an important role in the construction of Ni**2**Fe type complexes.**²²** The authors predicted that the en compound $[Ni(en)]_2[Fe(CN)_6]X$

Fig. 3 Temperature dependence of $\chi_M T$ for complex 1. The solid line is the calculated curve discussed in the text.

Fig. 4 Temperature dependence of $\chi_M T$ for complex 2. The solid line represents the fit discussed in the text.

 $(X = ClO₄⁻, BF₄⁻$ or $PF₆⁻$) cannot have a 2-D network structure as a result of the shallow cavity which is insufficient to accommodate the counter anions within it. We chose the less bulky and planar $NO₃⁻$ anion and obtained the 2-D $[Ni(en)_2]_2[Fe(CN)_6]NO_3$ complex.

Magnetic properties

The magnetic susceptibilities of complexes **1** and **2** have been measured in the temperature range 1.5–300 K with a model CF-1 vibrating-sample magnetometer. Plots of $\chi_{\rm m}T$ *vs. T* are

shown in Figs. 3 and 4, where χ _m is the magnetic susceptibility per Ni**2**Fe unit.

Complex 1. The $\chi_{\rm m}T$ value at room temperature is *ca*. 3.3 cm³ K mol⁻¹ (5.14 μ _B) which increases smoothly down to *ca*. 50 K and then sharply reaching a maximum value of 12.28 cm**³** K mol⁻¹ (9.91 μ_B) at 8.63 K. Below this temperature, $\chi_m T$ decreases rapidly down to 2.36 cm³ K mol⁻¹ (4.34 μ _B) at 1.5 K. The magnetic behaviour above 8.63 K suggests an intramolecular ferromagnetic interaction between adjacent iron(III) and nickel(II) through the cyanide bridges. The decrease in $\chi_M T$ below 8.6 K may be due to an intersheet antiferromagnetic interaction. Also, the magnetic susceptibility obeys the Curie– Weiss law with a positive Weiss constant $\theta = +5.9$ K, which sheds light on the presence of intramolecular ferromagnetic interaction. The maximum value of $\chi_{\rm m}T$ is much larger than the spin-only value of 4.38 cm³ K mol⁻¹ (5.92 $\mu_{\rm B}$) for $S_T = 5/2$ resulting from the ferromagnetic coupling of two nickel(II) $\frac{\pi}{2}$ (*S* = 1, *g* = 2.0) and one iron(III) ion (*S* = $\frac{1}{2}$, *g* = 2.0), strongly from $S = 1$, $g = 2.0$ and one from (iii) for $S = \frac{1}{2}$, $g =$ suggestive of the occurrence of magnetic ordering.

Neglecting interactions between the 2-D sheets, the magnetic coupling for the compounds involves a 2-D spin Hamiltonian with at least four coupling constants, corresponding to the four different separations between adjacent iron(III) and nickel (II) ions revealed by the structure data of **1**. Since such a complex Hamiltonian cannot be used for data analysis, we used an approximate approach similar to that reported previously.**31–33**

As indicated in Fig. 1, the four Fe–CN–Ni linkages do not differ significantly from each other therefore they can be considered equivalent for simplicity. On this basis, the 2-D sheet was treated as a system of interacting 1-D chains. The uniform chains, formed by the Ni–Fe–Ni trinuclear units, can be schematised as shown below where J_t , J_c and J' stand for the exchange integrals between the S_{Fe} and S_{Ni} spins within the Ni₂Fe trimer, between the S_t effective spins of the trimers and between the chains, respectively, and were treated as equivalent.

Using this model, the susceptibility above 18 K can be approximated by eqns. (1)–(4). When allowing the *g* and *J* values to vary, we obtained the best fit to the experimental data with parameters $J_t = J_c = J' = 0.88$ cm⁻¹, $g = 2.29$ and $R = 1.1 \times 10^{-3}$ [$R = \Sigma(\chi_{obs} - \chi_{calc})^2/\chi_{obs}^2$] for the 76 observations (18–300 K). As shown in Fig. 3, the fit may be considered good.

$$
\chi_{t} = \frac{Ng^{2}\beta^{2}}{4kT} \frac{10 + 35\exp(5J_{t}/kT) + 10\exp(4J_{t}/kT) + \exp(J_{t}/kT) + \exp(3J_{t}/kT)}{3\exp(5J_{t}/kT) + 2 + 2\exp(4J_{t}/kT) + \exp(J_{t}/kT) + \exp(3J_{t}/kT)}
$$
(1)

$$
\chi_{t} = \frac{Ng^{2}\beta^{2}}{3kT} S_{t}(S_{t} + 1)
$$
\n(2)

$$
\chi_{\text{chain}} = \frac{Ng^2\beta^2}{3kT} \frac{1+u}{1-u} \times S_t(S_t+1), \text{ where } u = \coth[J_cS_t(S_t+1)/kT] - kT/J_cS_t(S_t+1)
$$
 (3)

$$
\chi_{\rm m} = \frac{\chi_{\rm chain}}{1 - \chi_{\rm chain}(2zJ'/Ng^2\beta^2)}, \text{ where } z = 2
$$
 (4)

Complex 2. Complex **2** has similar magnetic behaviour to that of **1**. The magnetic susceptibility obeys the Curie–Weiss law with a positive Weiss constant $\theta = +9.8$ K. The $\chi_{\rm m}T$ value of $3.51 \text{ cm}^3 \text{ K} \text{ mol}^{-1}$ at room temperature is much larger than that expected for uncoupled two nickel(I) ($S = 1$) and one iron(III) ion $(S = 1/2)$ (2.375 cm³ K mol⁻¹, calculated with $g = 2.0$), probably due to an orbital contribution to the magnetic moment of the low-spin Fe^{III} (${}^{2}T_{2g}$). The maximum $\chi_{\rm m}$ *T* value (6.17 cm³ K mol⁻¹, 7.03 $\mu_{\rm B}$) is larger than the spin-only value for $S_T = 5/2$ resulting from the ferromagnetic coupling of two nickel(II) and one low-spin iron(III) ion $(S =$ 1/2, $g = 2.0$) and close to that $(6.24 \text{ cm}^3 \text{ K} \text{ mol}^{-1}, 7.07 \mu_{\text{B}})$ for *g* = 2.39.

To analyse the magnetic data, we assume that complex **2** has a structure similar to that of **1**. On this basis, the susceptibility above 21 K can be approximated by eqns. (1) – (4) . When allowing the *g* and *J* values to vary, we obtained the best fit to the experimental data with parameters $J_t = J_c = J' = 0.92 \text{ cm}^{-1}$, $g = 2.39$ and $R = 2.5 \times 10^{-3}$ for the 76 observations (21–300 K). As shown in Fig. 4, the fit may be considered fairly good.

The results $(J_t = J_c = J' > 0)$ show the presence of weak ferromagnetic interaction between the nickel(I) and iron(I II) ions within each sheet through the CN^- ligands. The ferromagnetic interaction can be rationalised by the strict orthogonality of the magnetic orbitals of low-spin $\text{Fe}^{\text{III}}\text{ (t_{2g}^5)}$ and Ni^{II} (e_g^2) .³⁴ The decrease in $\chi_M T$ at low temperatures may be due to an intersheet antiferromagnetic interaction. Taking into account the structure of 1 which contains bent Ni-N=C-Fe linkages, we can conclude that the characters of magnetic coupling are not significantly affected by the Ni-N=C bond angles.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 59772020, No. 29631040) and Natural Science Foundation of Tianjin.

References

- 1 R. Klenze, B. Kanellakopulos, G. Trageser and H. H. Eysel, *J. Chem. Phys.*, 1980, **72**, 5819.
- 2 F. Herren, P. Fischer, A. Ludi and W. Halg, *Inorg. Chem.*, 1980, **19**, 956.
- 3 W. D. Griebler and D. Babel, *Z. Naturforsch.*, *Teil. B*, 1982, **87**, 832.
- 4 V. Gadet, T. Mallah, I, Castro and M. Verdaguer, *J. Am. Chem. Soc.*, 1992, **114**, 9213.
- 5 V. Gadet, M. Bujoli-Doeuff, L. Force, M. Verdaguer, K. El Malkhi, A. Deroy, J. P. Besse, C. Chappert, P. Veillet, J. P. Renard and P. Beauvillain, in *Molecular Magnetic Materials*, eds. D. Gatteschi, O. Kahn, J. S. Miller and P. Palacio, *NATO ASI Ser.* 198, Kluwer, Dordrecht, 1990, p. 281.
- 6 T. Mallah, S. Thiebaut, M. Verdaguer and P. Veillet, *Science*, 1993, **262**, 1554.
- 7 W. R. Entley and G. S. Girolami, *Inorg. Chem.*, 1994, **33**, 5165.
- 8 W. R. Entley and G. S. Girolami, *Science*, 1995, **21**, 268.
- 9 S. Ferlay, T. Mallah, R. Ouaches, P. Veillet and M. Verdaguer, *Nature* (*London*), 1995, **378**, 701.
- 10 O. Sato, T. Iyoda, A. Fujishima and K. Hashimoto, *Science*, 1996, **271**, 49.
- 11 M. Verdaguer, *Science*, 1996, **272**, 698.
- 12 O. Sato, T. Iyoda, A. Fujishima and K. Hashimoto, *Science*, 1996, **272**, 704.
- 13 K. V. Langenberg, S. R. Batten, K. J. Berry, D. C. R. Hockless, B. Moubaraki and K. S. Murray, *Inorg. Chem.*, 1997, **36**, 5006.
- 14 H. Miyasaka, H. Ieda, N. Matsumoto, N. Re, R. Crescenzi and C. Floriani, *Inorg. Chem.*, 1998, **37**, 255.
- 15 M. Ohba, N. Maruone, H. Okawa, T. Enoki and J.-M. Latour, *J. Am. Chem. Soc.*, 1994, **116**, 11566.
- 16 M. Ohba, N. Fukita and H. Okawa, *J. Chem. Soc.*, *Dalton Trans.*, 1997, 1733.
- 17 H. Okawa and M. Ohba, *ACS Symp. Ser.*, 1996, **644**, 319.
- 18 H.-Z. Kou, D.-Z. Liao, P. Cheng, Z.-H. Jiang, S.-P. Yan, G.-L. Wang, X.-K. Yao and H.-G. Wang, *J. Chem. Soc.*, *Dalton Trans.*, 1997, 1503.
- 19 H.-Z. Kou, H.-M. Wang, D.-Z. Liao, P. Cheng, Z.-H. Jiang, S.-P. Yan, X.-Y. Huang and G.-L. Wang, *Aust. J. Chem.*, 1998, **51**, 661.
- 20 M. Ohba, H. Okawa, T. Ito and A. Ohto, *J. Chem. Soc.*, *Chem. Commun.*, 1995, 1545.
- 21 M. Ohba and H. Okawa, *Mol. Cryst. Liq. Cryst.*, 1996, **286**, 101.
- 22 M. Ohba, H. Okawa, N. Fukita and Y. Hashimoto, *J. Am. Chem. Soc.*, 1997, **119**, 1011.
- 23 S. Ferlay, T. Mallah, J. Vaissermann, F. Bartolome, P. Veillet and M. Verdaguer, *Chem. Commun.*, 1996, 2481.
- 24 H. Miyasaka, N. Matsumoto, H. Okawa, N. Re, E. Gallo and C. Floriani, *Angew. Chem.*, *Int. Ed. Engl.*, 1995, **34**, 1446.
- 25 H. Miyasaka, N. Matsumoto, H. Okawa, N. Re, E. Gallo and C. Floriani, *J. Am. Chem. Soc.*, 1996, **118**, 981.
- 26 N. Re, E. Gallo, C. Floriani, H. Miyasaka and N. Matsumoto, *Inorg. Chem.*, 1996, **35**, 5964.
- 27 H. Miyasaka, N. Matsumoto, N. Re, E. Gallo and C. Floriani, *Inorg. Chem.*, 1997, **36**, 670.
- 28 M. S. El Fallah, E. Rentschler, A. Caneschi, R. Sessoli and D. Gatteschi, *Angew. Chem.*, *Int. Ed. Engl.*, 1996, **35**, 1947.
- 29 N. Fukita, M. Ohba, H. Okawa, K. Matsuda and H. Iwamura, *Inorg. Chem.*, 1998, **37**, 842.
- 30 C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
- 31 B. Chiari, A. Cinti, O. Piovesana and P. F. Zanazzi, *Inorg. Chem.*, 1995, **34**, 2652.
- 32 M. C. Burla, B. Chiari, A. Cinti and O. Piovesana, *Mol. Cryst. Liq. Cryst.*, 1995, **273**, 211.
- 33 A. Caneschi, D. Gatteschi, M. C. Melandri, P. Rey and R. Sessoli, *Inorg. Chem.*, 1990, **29**, 4228.
- 34 O. Kahn, in *Molecular Magnetism*, VCH, Weinheim, 1993.

Paper 8/05470C